Construction of value functions of integer programs with finite domain

Yifei Huang¹, Junlong Zhang²

¹Department of Management, Technology and Economics, ETH Zürich ²Department of Industrial Engineering, Tsinghua University

zhang junlong @tsinghua.edu.cn

MIP Workshop 2025, Minneapolis

MIP Workshop 2025, Minneapolis 1 / 24

Value functions of integer programs:

$$\mathbf{z}(eta) = \max\{\mathbf{c}^{\mathsf{T}} x \mid A x \leq eta, \ x \in \mathbb{Z}_+^n\}, \ eta \in \mathbb{Z}^m,$$

where c and A are integral. Let $S(\beta) = \{x \in \mathbb{Z}_+^n \mid Ax \leq \beta\}.$

Properties (Nemhauser and Wolsey, 1988):

- 1. $z(\cdot)$ is **nondecreasing** in $\beta \in \mathbb{Z}^m$.
- 2. $z(\cdot)$ is superadditive over $D = \{\beta \in \mathbb{Z}^m \mid S(\beta) \neq \emptyset\}$. That is, for $\beta^1, \beta^2 \in D$, if $\beta^1 + \beta^2 \in D$, then

$$z(\beta^1) + z(\beta^2) \le z(\beta^1 + \beta^2).$$

$$\mathbf{z}(\beta) = \max\{\mathbf{c}^T x \mid A \mathbf{x} \leq \beta, \ \mathbf{x} \in \mathbb{Z}_+^n\}, \ \beta \in \mathbb{Z}^m.$$

Properties (Nemhauser and Wolsey, 1988):

3. (Integer complementary slackness) If $\hat{x} \in \arg \max\{c^T x \mid x \in S(\beta)\}$, then for all $x \in \mathbb{Z}_+^n$ such that $x \leq \hat{x}$,

$$z(Ax) = c^T x$$

and

$$z(Ax) + z(\beta - Ax) = z(Ax) + z(A(\hat{x} - x)) = z(\beta).$$

4. (Column elimination)

(1) For
$$j = 1, ..., n$$
, we have $z(a_j) \ge c_j$.
(2) If $z(a_j) > c_j$, then $\hat{x}_j = 0$ for all $\hat{x} \in \arg \max\{c^T x \mid x \in S(\beta)\}$ and $\beta \in \mathbb{Z}^m$.

Application in solving stochastic integer programs:

$$\begin{array}{ll} \max & c^T x + \mathbb{E}_{\xi}[Q(x,\xi)] \\ \text{subject to} & Ax \leq b, \; x \in \mathbb{Z}_+^{n_1}, \end{array}$$

where

$$Q(x,\xi) = \max\{t^T y \mid Wy \le h(\xi) - Tx, y \in \mathbb{Z}_+^{n_2}\}.$$

Idea: compute IP value functions in both the first and second stages, and then solve the stochastic integer program.

Application in solving bilevel integer programs:

$$\begin{array}{ll} \max & c^T x + d^T y\\ \text{subject to} & Ax \leq b, \ x \in \mathbb{Z}_+^{n_1},\\ & y \in \arg \max\{t^T y \mid Wy \leq h - Tx, \ y \in \mathbb{Z}_+^{n_2}\}. \end{array}$$

- Two decision makers: leader and follower.
- Leader decides **upper-level variables** *x* first, and follower then decides **lower-level variables** *y*.

Define follower's value function:

$$z(\beta) = \max\{t^T y \mid Wy \leq \beta, y \in \mathbb{Z}_+^{n_2}\}, \beta \in \mathbb{Z}^{m_2}.$$

Idea: compute $z(\cdot)$ first, and then solve the bilevel integer program.

Application in solving **multi-objective integer programs**:

$$\begin{array}{ll} \max & f = (c_1^T x, \ c_2^T x, \ldots, c_p^T x) \\ \text{subject to} & x \in X. \end{array}$$

The corresponding value function in ϵ -constraint method:

$$z(\beta) = \max_{x \in X} c_1^T x$$

subject to $c_2^T x \le \beta_1,$
 $c_3^T x \le \beta_2,$
 \dots
 $c_p^T x \le \beta_{p-1}.$

э

Application in solving other problems:

- Robust optimization problems
- Online optimization problems

• . . .

Construction of IP value functions:

Proposition (dynamic programming recursion) (Kong et al. 2006)

For IP value function $z(\cdot)$ with nonnegative constraint matrix $(A \ge 0)$ and objective function coefficients $(c \ge 0)$, and a feasible right-hand side vector $\beta \ge a_j$ for some $1 \le j \le n$, we have

 $z(\beta) = \max\{z(\beta - a_j) + c_j : \beta \ge a_j, \ 1 \le j \le n\}.$

A dynamic programming algorithm for computing the IP value function $z(\beta)$ for $\beta \in [0, \overline{\beta}]$ in:

Kong, N., Schaefer, A. J., & Hunsaker, B. (2006). Two-stage integer programs with stochastic right-hand sides: A superadditive dual approach. *Mathematical Programming*, 108(2-3), 275-296.

Note: the dimension of β is restricted to $m \leq 7$ in their experiments.

< 日 > < 同 > < 三 > < 三 >

1. Introduction

Definition (level-set minimal) (Trapp et al. 2013)

For IP value function $z(\cdot)$, a right-hand side vector β is called *level-set* minimal if $z(\beta - e_i) < z(\beta)$ for all $i \in \{1, ..., m\}$, where e_i is the *i*th unit vector. Let \overline{B} be the set of all level-set minimal vectors.

Proposition (Trapp et al. 2013)

For any level-set minimal vector $\beta \in \overline{\mathbf{B}}$ and \hat{x} optimal to $z(\beta)$,

$$A\hat{x} = \beta.$$

Theorem (Trapp et al. 2013)

For any feasible right-hand side vector β ,

$$z(\beta) = \max_{\pi \in \overline{\mathbf{B}}: \pi \leq \beta} z(\pi).$$

Yifei Huang¹, Junlong Zhang²

A recursive procedure for computing the IP value function $z(\beta)$ for $\beta \in \overline{\mathbf{B}} \cap [0, \overline{\beta}]$ in:

Trapp, A. C., Prokopyev, O. A., & Schaefer, A. J. (2013). On a level-set characterization of the value function of an integer program and its application to stochastic programming. *Operations Research*, 61(2), 498-511.

Main idea:

- 1. Solve the IP for some β , then use integer complementary slackness to derive the optimal solution to some other β .
- 2. Generate all Ax, then discard those vectors not level-set minimal.

Note: the dimension of β can be larger than that in Kong et al. (2006).

IP value function

$$z(\beta) = \max_{x} \{ c^{\mathsf{T}} x \colon Ax \leq \beta, \ x \in \mathbb{Z}_{+}^{n} \}, \ \beta \in \mathbb{Z}^{m}.$$

Restricted IP value function over the first $k \in \{1, ..., n\}$ variables

$$z_k(\beta) = \max_{x} \left\{ \sum_{j=1}^k c_j x_j : \sum_{j=1}^k a_j x_j \le \beta, \ x \in \mathbb{Z}_+^k \right\}, \ \beta \in \mathbb{Z}^m.$$

was defined in:

Brown S, Zhang W, Ajayi T, Schaefer AJ (2021). A Gilmore-Gomory construction of integer programming value functions. *Operations Research Letters*, 49(4):522–529.

Define $S_k(\beta) = \{x \in \mathbb{Z}_+^k : \sum_{j=1}^k a_j x_j \le \beta\}$, $\mathbf{B}_k = \{\beta \in \mathbb{Z}^m : S_k(\beta) \ne \emptyset\}$ and $\operatorname{opt}_k(\beta) = \operatorname{arg\,max}\{\sum_{j=1}^k c_j x_j : x \in S_k(\beta)\}$. Let $\mathbf{\bar{B}}_k$ be the set of all level-set minimal vectors in \mathbf{B}_k .

Proposition (Brown et al. 2021)

For $k \in \{2, \ldots, n\}$, we have

$$\bar{\mathbf{B}}_{k} \subseteq \left\{ \hat{\beta} + ta_{k} : \hat{\beta} \in \bar{\mathbf{B}}_{k-1}, \ t \in \mathbb{Z}_{+} \right\}.$$

Lemma (Initial condition)

$$z_1(\mathit{ta}_1) = \mathit{tc}_1$$
 for $\mathit{t} \geq 1$ and $ar{\mathsf{B}}_1 = \{x_1 \mathit{a}_1 : x_1 \in \mathbb{Z}_+\}.$

Lemma (Column elimination)

For $2 \leq k \leq \hat{k} \leq n$,

- (i) for $t \ge 1$, if $z_{\hat{k}}(ta_k) > tc_k$ or $ta_k \notin \bar{\mathbf{B}}_{\hat{k}}$, then ta_k can be discarded in the generation of $\bar{\mathbf{B}}_{\hat{k}}$;
- (ii) for $1 \le j < k \le \hat{k} \le n$ and $t \ge 1$, if $z_j(ta_k) = tc_k$, then for all $\beta \in \mathbf{B}_{\hat{k}}$ with $\beta \ge ta_k$, there exists $x^* \in \operatorname{opt}_{\hat{k}}(\beta)$ such that $x_k^* < t$.

Proposition

For $k \in \{2, ..., n\}$ and $t \ge 2$, suppose that $z_k((t-1)a_k) = (t-1)c_k$. We have

(i) if
$$z_{k-1}(ta_k) \le tc_k$$
, then $z_k(ta_k) = tc_k$;
(ii) if $z_{k-1}(ta_k) < tc_k$ and $(t-1)a_k \in \bar{\mathbf{B}}_k$, then $ta_k \in \bar{\mathbf{B}}_k$;
(iii) if $z_{k-1}(ta_k) > tc_k$, then $z_k(ta_k) = z_{k-1}(ta_k)$.
Thus, $z_k(ta_k) = \max\{z_{k-1}(ta_k), tc_k\}$.

The following proposition implies that we can discard those $\beta \in \overline{\mathbf{B}}_{k-1} \setminus \overline{\mathbf{B}}_k$ in the construction of $\overline{\mathbf{B}}_k$.

Proposition

For $k \in \{2, ..., n\}$ and $\beta \in \overline{\mathbf{B}}_k \setminus \overline{\mathbf{B}}_{k-1}$, there exists $\hat{\beta} \in \overline{\mathbf{B}}_{k-1} \cap \overline{\mathbf{B}}_k$ and $t \ge 1$ such that $\beta = \hat{\beta} + ta_k$.

The following lemma is critical in deriving the rest properties.

Lemma

For $k \in \{2, \ldots, n\}$ and $t \ge 0$, we have

 $z_k(\beta + ta_k) = \max\{z_{k-1}(\beta + ta_k), \ z_k(\beta + (t-1)a_k) + c_k\}.$

< □ > < □ > < □ > < □ > < □ > < □ >

The following two propositions present sufficient conditions under which $\beta + ta_k$ is NOT level-set minimal with respect to $z_k(\cdot)$.

Proposition

For $k \in \{2, ..., n\}$, $t \ge 0$ and $\beta + ta_k \in \mathbf{B}_{k-1}$, if $\beta + ta_k \notin \bar{\mathbf{B}}_{k-1}$ and $z_{k-1}(\beta + ta_k) \ge z_k(\beta + (t-1)a_k) + c_k$, then $\beta + ta_k \notin \bar{\mathbf{B}}_k$.

Proposition

For $k \in \{2, ..., n\}$, $t \ge 0$ and $\beta + ta_k \in \mathbf{B}_{k-1}$, if $\beta + (t-1)a_k \notin \mathbf{\overline{B}}_k$ and $z_{k-1}(\beta + ta_k) \le z_k(\beta + (t-1)a_k) + c_k$, then $\beta + ta_k \notin \mathbf{\overline{B}}_k$.

< 回 > < 回 > < 回 >

The following two propositions present sufficient conditions under which $\beta + ta_k$ is level-set minimal with respect to $z_k(\cdot)$.

Proposition

For $k \in \{2, ..., n\}$, $t \ge 0$ and $\beta + ta_k \in \mathbf{B}_{k-1}$, if $\beta + (t-1)a_k \in \bar{\mathbf{B}}_k$ and $z_{k-1}(\beta + ta_k) < z_k(\beta + (t-1)a_k) + c_k$, then $\beta + ta_k \in \bar{\mathbf{B}}_k$.

Proposition

For
$$k \in \{2, ..., n\}$$
, $t \ge 0$ and $\beta + ta_k \in \overline{\mathbf{B}}_{k-1}$, if
 $z_{k-1}(\beta + ta_k) > z_k(\beta + (t-1)a_k) + c_k$, or $\beta + (t-1)a_k \in \overline{\mathbf{B}}_k$ and
 $z_{k-1}(\beta + ta_k) \ge z_k(\beta + (t-1)a_k) + c_k$, then $\beta + ta_k \in \overline{\mathbf{B}}_k$.

The following proposition gives a sufficient condition under which $\beta + (t+1)a_k$ does not need to be considered in the construction of $\mathbf{\bar{B}}_k$.

Proposition

For $k \in \{2, ..., n\}$, $t \ge 1$ and $\beta \in \mathbf{B}_{k-1}$, if $\beta \in \mathbf{\overline{B}}_k$ and $\beta + ta_k \notin \mathbf{\overline{B}}_k$, then $\beta + (t+1)a_k \notin \mathbf{\overline{B}}_k \setminus \mathbf{\overline{B}}_{k-1}$.

Algorithm 1 Construct $z_n(\cdot)$ over $\bar{\mathbf{B}}_n \cap \mathcal{H}_+$ when $a_k \ge 0$ for all $k \in \{1, \dots, n\}$

Initialization: Compute $u_k = \min\{\lfloor \frac{h_i}{a_{i,k}} \rfloor : i = 1, ..., m\}$ for each $k \in \{1, ..., n\}$. Set $z_1(ta_1) = tc_1$ for $t=0,\ldots,u_1$, and $\overline{\mathcal{B}}_1=\overline{\mathbf{B}}_1\cap\mathcal{H}_+=\{ta_1:t=0,\ldots,u_1\}$ (Lemma 3). Initialize $k^-=1$ and k=2. 1: while $k \leq n$ do Initialize $\bar{\mathcal{B}}_{\nu} = \emptyset$. 2: 3: for t = 1 to u_k do Compute $z_{k-}(ta_k) = \max\{z_{k-}(\tilde{\beta}) : \tilde{\beta} \in \bar{\mathcal{B}}_{k-}, \tilde{\beta} \le ta_k\}$. (Proposition 3) 4: if $z_{k-}(ta_k) \geq tc_k$ then 5: 6: if t == 1 then Eliminate a_k , set k = k + 1 and go to line 1. (Propositions 4 and 10) 7: 8: else 9: Go to line 11. (Propositions 9 and 10) Set $z_k(ta_k) = tc_k$ and $\overline{\mathcal{B}}_k = \overline{\mathcal{B}}_k \cup \{ta_k\}$. (Propositions 11 and 14) 10: Update $u_k = t - 1$. 11:

12:	for all $\beta \in \overline{\mathcal{B}}_{k^-}$ (in lexicographical order) do
13:	if $\beta \not\geq a_k$ then
14:	Set $\overline{\mathcal{B}}_k = \overline{\mathcal{B}}_k \cup \{\beta\}$ and $z_k(\beta) = z_{k-}(\beta)$. (Proposition 16)
15:	else
16:	Compute $z_k(\beta - a_k) = \max\{z_k(\tilde{\beta}) : \tilde{\beta} \in \bar{\mathcal{B}}_k, \ \tilde{\beta} \le \beta - a_k\}.$
17:	Set $z_k(\beta) = \max\{z_{k-}(\beta), z_k(\beta - a_k) + c_k\}$. (Lemma 6)
18:	if $z_{k^-}(eta) > z_k(eta-a_k) + c_k$ or $eta-a_k \in ar{\mathcal{B}}_k$ then
19:	Set $\overline{\mathcal{B}}_k = \overline{\mathcal{B}}_k \cup \{\beta\}$. (Propositions 20 and 21)
20:	else
21:	$\beta \notin \bar{\mathbf{B}}_k$ and go to line 12. (Propositions 17 and 19)
22:	for $t = 1$ to u_k do
23:	if $\beta + ta_k \nleq \bar{h}$ then Go to line 12.
24:	Compute $z_{k^-}(\beta + ta_k) = \max\{z_{k^-}(\tilde{\beta}) : \tilde{\beta} \in \bar{\mathcal{B}}_{k^-}, \ \tilde{\beta} \le \beta + ta_k\}.$
25:	Set $z_k(\beta + ta_k) = \max\{z_{k-}(\beta + ta_k), z_k(\beta + (t-1)a_k) + c_k\}$. (Lemma 6)
26:	if $z_{k-}(\beta + ta_k) < z_k(\beta + (t-1)a_k) + c_k$ or $\beta + ta_k \in \overline{\mathcal{B}}_{k-}$ then
27:	Set $\overline{\mathcal{B}}_k = \overline{\mathcal{B}}_k \cup \{\beta + ta_k\}$. (Propositions 20 and 21)
28:	else
29:	$\beta + ta_k \notin \mathbf{\bar{B}}_k$ and go to line 12. (Propositions 18 and 22)
30:	Set $k^- = k$ and $k = k + 1$.
31:	return $\bar{\mathcal{B}}_{k^-} = \bar{\mathbf{B}}_n \cap \mathcal{H}_+$ with $z_{k^-}(\beta) = z_n(\beta)$ for $\beta \in \bar{\mathcal{B}}_{k^-}$.

Advantages over the approach of Trapp et al. (2013):

- 1. Do not need to solve any IP.
- 2. Do not generate any vector not level-set minimal.
- 3. Pre-processing is less complicated.
- 4. Can be extended to the case where A has negative elements.

Class	Ω	т	<i>n</i> ₁	<i>n</i> ₂	Δ	Range: [min, max]				
Class						с	Т	d	W	$h(\omega)$
IC-K1	7,812	6	1,000	100	0.5	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 9]
IC-K2	7,812	6	500	500	0.5	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 9]
IC-K3	7,812	6	300	500	0.5	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 9]
IC-K4	7,812	6	500	500	0.5	[1, 10]	[1, 4]	[2, 6]	[2, 5]	[5, 9]
IC-K5	7,812	6	500	500	0.5	[1, 5]	[1, 3]	[2, 6]	[2, 5]	[5, 9]
IC-K6	7,812	6	500	500	0.8	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 9]
IC-K7	7,812	7	1,000	500	0.7	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-K8	7,812	7	500	500	0.7	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-K9	7,812	7	300	500	0.7	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-K10	7,812	7	1,000	500	0.3	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T1	1,000	20	50	50	0.3	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T2	1,000	20	50	50	0.4	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T3	1,000	20	50	50	0.5	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T4	5,000	50	100	100	0.3	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T5	5,000	50	100	100	0.4	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T6	5,000	50	100	100	0.5	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T7	8,000	100	200	200	0.3	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T8	8,000	100	200	200	0.4	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T9	8,000	100	200	200	0.5	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T10	10,000	100	300	300	0.3	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T11	10,000	100	300	300	0.4	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T12	10,000	100	300	300	0.5	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T13	10,000	20	50	50	0.5	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T14	50,000	50	100	100	0.4	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T15	80,000	100	200	200	0.3	[1, 5]	[1, 4]	[2, 6]	[2, 5]	[5, 10]
IC-T16	300,000	250	1,000	500	0.3	[1, 5]	[1, 4]	2, 6	2, 5	[5, 10]

Table: Characteristics of instance classes in Trapp et al. (2013).

Yifei Huang¹, Junlong Zhang²

21/24

Class	0	ur algorithr	n		+- /+ .				
Class	$ \bar{B}^1 $	$ \bar{\mathbf{B}}^2 $	t_{A1}	IPs	t _{CE}	t _{VFC}	t _{RDM}	t _P	
IC-K1	46,656	225	20.694	1,175	4.664	40.066	12.395	57.151	2.762
IC-K2	15,552	12,920	1.241	101,726	4.203	297.989	2.623	304.840	245.641
IC-K3	6,480	6,480	0.088	75,569	3.371	192.231	0.482	196.108	2,228.500
IC-K4	15,552	12,920	1.250	101,726	4.281	281.205	2.568	288.077	230.462
IC-K5	31,104	8,064	4.378	791,683	4.373	1,972.205	5.398	1,982.004	452.719
IC-K6	2,258	2,993	0.170	37,615	5.421	316.061	0.100	321.603	1,891.782
IC-K7	24,378	7,685	4.794	176,298	7.827	1,049.686	4.688	1,062.230	221.575
IC-K8	10,549	15,399	5.219	377,312	5.581	4,154.700	2.610	4,162.910	797.645
IC-K9	5,781	3,644	0.420	49,379	4.054	338.047	0.349	342.473	815.412
IC-K10	279,936	28,000	98.680	-	-	-	-	-	-
IC-T1	18,860	42,045	8.666	32,061	1.235	95.705	18.708	115.673	13.348
IC-T2	1,037	1,407	0.022	2,215	1.710	2.780	0.020	4.533	202.985
IC-T3	227	412	0.005	1,498	2.083	0.765	0.001	2.871	574.133
IC-T4	2,525	3,846	0.184	6,571	5.916	6.287	0.165	12.392	67.468
IC-T5	338	450	0.019	4,744	7.737	1.064	0.002	8.826	472.821
IC-T6	139	190	0.009	5,466	9.729	0.494	0.000	10.246	1,182.192
IC-T7	886	988	0.118	13,697	26.288	3.096	0.013	29.423	249.350
IC-T8	250	270	0.039	16,795	36.772	1.057	0.001	37.855	970.641
IC-T9	201	201	0.032	20,754	48.341	1.063	0.001	49.429	1,560.926
IC-T10	2,094	4,043	0.579	22,751	44.231	11.321	0.164	55.743	96.329
IC-T11	389	457	0.091	25,248	63.005	1.985	0.003	65.017	711.869
IC-T12	302	306	0.070	31,111	86.335	1.934	0.001	88.296	1,261.367
IC-T13	280	360	0.005	1,472	2.055	0.778	0.002	2.856	535.500
IC-T14	279	496	0.017	4,730	7.946	1.017	0.002	8.987	518.500
IC-T15	1,057	1,046	0.127	13,875	26.145	3.468	0.016	29.656	234.126
IC-T16	1,094	537	0.958	115,408	772.078	12.064	0.013	784.191	818.287
Average	18,008	5,976	5.687	81,235	47.415	351.483	2.013	400.936	654.254

- Runtime limit is exceeded.

э

- 1 The size of set $\bar{\mathbf{B}}$ can be very large. We are working on tighter characterizations of integer programming value functions.
- 2 We are also studying value functions of binary programs.
- 3 Future research: develop machine learning approaches for computing integer programming value functions, e.g.,

Bertsimas D, Stellato B (2022). Online mixed-integer optimization in milliseconds. *INFORMS Journal on Computing*, 34(4):2229–2248.

Thank you!

æ

→ 圖 ▶ → 国 ▶ → 国 ▶